JÉRÔME MENDES
29 May 2018

Neo-fuzzy neuron learning using backfitting algorithm

This paper proposes an automatic and simple approach to design a neo-fuzzy neuron for identification purposes. The proposed approach uses the backfitting algorithm to learn multiple univariate additive models, where each additive model is a zero-order T-S fuzzy system which is a function of one input variable, and there is one additive model for each input variable. The multiple zero-order T-S fuzzy models constitute a neo-fuzzy neuron. The structure of the model used in this paper allows to have results with good interpretability and accuracy. To validate and demonstrate the performance and effectiveness of the proposed approach, it is applied on 10 benchmark data sets and compared with the extreme learning machine (ELM), support vector regression (SVR) algorithms, and two algorithms for design neo-fuzzy neuron systems, an adaptive learning algorithm for a neo-fuzzy neuron systems (ALNFN), and a fuzzy Kolmogorov’s network (FKN). A statistical paired t test analysis is also presented to compare the proposed approach with ELM, SVR, ALNFN, and FKN with the aim to see whether the results of the proposed approach are statistically different from ELM, SVR, ALNFN, and FKN. The results indicate that the proposed approach outperforms ELM and FKN in all data sets and outperforms SVR and ALNFN in almost all data sets that they were statistically different in almost all data sets and that in most data sets the number of fuzzy rules selected by cross-validation was small obtaining a model with a small complexity and good interpretability capability.

Comments Off on Neo-fuzzy neuron learning using backfitting algorithm